Semiparametric Binary Regression Models under Shape Constraints
نویسندگان
چکیده
We consider estimation of the regression function in a semiparametric binary regression model defined through an appropriate link function (with emphasis on the logistic link) using likelihood-ratio based inversion. The dichotomous response variable ∆ is influenced by a set of covariates that can be partitioned as (X,Z) where Z (real valued) is the covariate of primary interest and X (vector valued) denotes a set of control variables. For any fixed X, the conditional probability of the event of interest (∆ = 1) is assumed to be a non–decreasing function of Z. The effect of the control variables is captured by a regression parameter β. We show that the baseline conditional probability function (corresponding to X = 0) can be estimated by isotonic regression procedures and develop a likelihood ratio based method for constructing asymptotic confidence intervals for the conditional probability function (the regression function) that avoids the need to estimate nuisance parameters. Interestingly enough, the calibration of the likelihood ratio based confidence sets for the regression function no longer involves the usual χ quantiles, but those of the distribution of a new random variable that can be characterized as a functional of convex minorants of Brownian motion with quadratic drift. Confidence sets for the regression parameter β can however be constructed using asymptotically χ likelihood ratio statistics. The finite sample performance of the methods are assessed via a simulation study.
منابع مشابه
Semiparametric Binary Regression Models under Shape Constraints with an Application to Indian Schooling Data
We consider estimation of the regression function in a semiparametric binary regression model defined through an appropriate link function (with emphasis on the logistic link) using likelihood-ratio based inversion. The dichotomous response variable ∆ is influenced by a set of covariates that can be partitioned as (X,Z) where Z (real valued) is the covariate of primary interest and X (vector va...
متن کاملEstimation of semiparametric stochastic frontiers under shape constraints with application to pollution generating technologies
A number of studies have explored the semiand nonparametric estimation of stochastic frontier models by using kernel regression or other nonparametric smoothing techniques. In contrast to popular deterministic nonparametric estimators, these approaches do not allow one to impose any shape constraints (or regularity conditions) on the frontier function. On the other hand, as many of the previous...
متن کاملA goodness-of-fit test for parametric and semi-parametric models in multiresponse regression
We propose an empirical likelihood test that is able to test the goodness-of-fit of a class of parametric and semiparametric multiresponse regression models. The class includes as special cases fully parametric models, semiparametric models, like the multi-index and the partially linear models, and models with shape constraints. Another feature of the test is that it allows both the response va...
متن کاملSemiparametric Estimation under Shape Constraints
Substantial structure and restrictions, such as monotonicity and curvature constraints, necessary to give economic interpretation to empirical findings are often furnished by economic theories. Although such restrictions may be imposed in certain parametric empirical settings in a relatively straightforward fashion, incorporating such restrictions in semiparametric models is often problematic. ...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کامل